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~~~~ Abstract vector determined by the initial ccndjtjcrs. To
the case of the regulator problem with end point

Ninirum energy control proble—s are con- constraint, it is first shown that a c~iver ter-’in-
sidered for commutative bilinear systems with al state x

1 x(T) for a cc’-,” utative bilinear
and without end point constraints, Optimal con— system is constant reachable if ar.~ only if it is
trols are shown to be constant vectors deter- reachable by a tine-dependent control. If x, be-
mined by the boundary conditions when the tar- lonms to the reachable Set, it is then shown that
ininal state belongs to the reachable set. Suf- the optimal control is a constant vector deter—
ficient conditions for uniQueness of solutions mined by the boundary conditions. ln icuer.ess of
are derived for the mininum energy problem solutions to the regulator problers of Section ~~

~~~~~~~~
. without a terminal constraint. Application to is discussed in Section lIT. As an exarole of a

a missile intercept problem is discussed in bilinear System , a missile intercept probler is
____ which the pursuer possesses thrust modulation discussed in Section IV in wh i ch  the pursuer p o s—

in addition to thrust vectoring. sesses thrust modulation in add i tmco  to th ru s t
vectoring. This additional demree of ft eeicn for

UJ the pursuer facilitates the formulation of the

• 
I problem as a regulator preblen for a cc—rucaci’:,

~~~~~ I. Introduction bilinear svste~ with end point c on st r a in t .  It is
then pointed out how a closed-forr solution can

Bilinear control systems have received in- be obtained for this exarole.

~~~~~~ creasir.~ attention in recent years due , in part.
to their natural applications in various engi— II. Problen Statement and Oxistence of Sc icr.s
neering, biological and soclo-economic systems

_____ Mohler 11], and in part to their intrinsically Consider the ru1ti-in~ut bilinear svsce~~• . nearly linear structure , Brun i et al [2], -

Brockett 13). In addition , the study of bilinear
control systems has potential applications to svs— _ + B ~ x x(t ) = x Rn
tens containing sinusoidal nonhinearities , Lo i i ‘ 0 0 

- ,

and Willsky [~4] ,  especially those arising in spa-
tial flight mechanics. This observation in con—
junction with a missile intercept problem motiva— ttft ,T] , U u( t ) 

l”Um
) ’  (

~~
ted the Study of the bilinear regulator problem

• discussed in this paper.
where A ,B.,i=l “‘- , are nxn constant matrices ,

The focus of this paper is on “commutative ” hi- utL
2
([t ,Tj,R

m ), the class of rn-vector valuedlinear systems, i.e. the special class of bilinear 0
control systems in which the coefficient matrices square integrahie functions on tt ,T~ .
commute with one another. This class has been
studied by Sussmann [5] relative to ‘han g-bang ” Definition 1: The system (1) is called a conmuta-
control functions. ~.re, the minimum energy con- tive bilinear gV’~tem if ev.ry pair of the ‘-atrices
trol of such coe~nutative bilinear systems is in— (A ,B1

•~ P )  commute with each other.
vestjgac~ d with m d  without end point onnstraint~
on the state. “oncemming the regulator problem As trmntioned earlier , the co nutative bilin-
without end point constraints , ~t ~s ~bown in ear system has hegn studfp’~ by Sussrann [5~ in whi ch
Cectior. TI that th~ opti—il control is a constant it was shown that the att~ irahle net is c cn.d re 3-

tlv. to ‘!‘ang-han~ ” controls ; ~aras an d I~x’-otcn t~)

~This res.areh was supported in part by th. tA direct input term Cu can always b. absorbed
Air Force Offic, of Scientific Pes.ar~h under into th. bilinear term B U X by Intrt’ducin,
Grant ~AFOSR—75-2793B. I I
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I

recently extended these results to delayed corntru- if and only if it is constant reachable to x1tative bilinear systems. The problem considered wi th respect to x
here is the minimum energy control of a commutative 0

bilinear system. Brociett [7] has obtained a sohu- Remark :
tion to the minimum control energy problem with a
fixed terminal state in the case of nxn matrix Theorem 1 assures that if u(t) c L2([t T],?n)
State commutative bilinear systems with dat X � 0. 0 ’

Steers the commutative bilinear system frcr’ xBy contrast, it will be shown that this problem - o
for the vector state system (1) has a simple solu- to x1 at T, then there exists a constant input
tion which possesses an easily implemented charac- 

function u which can do the same job as well.ter. c
This enables us to study the commutative bilinear

Two kinds of cost functions are investigated system with a class of simple easily irtlerented
here , input functions , namely,  the constant input

1T functions.
J
1
(u) = x’(T)Qx(T) + u ’( t )Ru( t)dt (2)

Proof:0 —

without a terminal constraint on the state, and The sufficiency part is true by definition. To sh:w
necessity, suppose u(t)~L

2(rt T],Po) steers (1)rT
j
2
(uj) I u’(t)Pu(t)dt with x(T) x

1 
(3)  from x0 to x1 at some finite time T. Then, sincei t

0 each pair of (A ,B • ‘ ?  ) commutes with each other,1 is
the solution of (1) at tire T can be ex,ressed aswhere x1 is a prespecified vector; Q and R are — -

n~ i nonnegative definite and positive definite svm- m
metric constant matrices respectively, and prime x(T) = •A (T ,t ) IT ~.(T,t )x r
denotes the matrix transpose operation. 0 11 0 0

In consideration of the existence of opti- where 
A (t .t 

) and •~(t,t )  denote the statenial controls to the above-mentioned problems, the transition ra~rices associated w ith A and B~u,(t~ ,
reachable set plays a vex”,’ important role. There- respectively. Choosing u~ such tha t
fore , we shall give the following definitions of
reachable set and reachability of a bilinear sys-
tem. With these definitions we can also reveal T
some interestinF characteristics of the reachable u = u.(s)~sc. ~-tset for a commutative bilinear system, i o

0
Definition 2: A set Z(x ;U) is called a reachable

° it is easily seen that ~ (T,t ) ~ (T—t ), when,
set associated with (1) if Z(x ;U) r (x (T) ~ Rn :X(t ) 0 Ci  0

wh ere • is the state transition matrix corre-x , u(t)tU,x(t) satisfies (1) in some finite in— c.0 1
terval it ,T3) .  A set Z(I;U) is called a reach— sponding to B u0 —

able zn ne associated with (1) if Thus i c
i
’

Z(I;L’) 1,,,,,,) z (x ;U). a m
x cD • (T ,t ) IT • .(T ,t )x •A (T ,t ) IT • (T-t )x = x .

0 . ,, C, 0 0o A ° i l ’ 0 0 
~~~~ ~

Definition 3: System (1) is reachable to x
1 with

respect to and Ti if there is an input u(t) which verifies the theorem.

c U which steers it from x0 to x1 at some fin- This result holds for a sllEhtlv more gen-

ite tire T. System (1) is constant n,anhahle to era]. bilinear system In which A A (t) is tire--
x wi th respect to x if there is a constant in- varying provided (A (t).” ‘B )) commute with1 is1 0
put func ti on  u wh ich  steers it from x to x one another. For th is  class of b i l i n e a r  ~~~~~~~~~~~~~

C 0 1 the reachable sone is much easier  to oharac ter ina
at core f i n i t e  t i re  T. because one need only consider a constant inrut - .

The following theor~ m states in Interest ing as a set of parameters , then commute the corre ’irc--

~moner~v re~~1r-~~ nc’ the reachabi l i ty  of commutative d1n~ t r an s it i on  matr icos ~ (T-s ~~, i~~l Sscdop 00 0 $bilinear Sy$t~ms. -• - which charaeteri?e s”. reaeh~ ble none of the given 0
- - system (1) with a set B of initial conditions . - 

—Th~~~~~ l:
Defin, the set of attainabiLity K of (1)

- The eeaeu’erlve M1!neay’ system (1, is reach- and (2) by BY
able to with resOect to x0 and L2(ft ,T),Pm) 

~ 1RI$(ITION/AYAII~~j~~~~
1 •;~A i  sad/st IP~~~

~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~ . ~, • ~~~~



f t
K = ( (x °( u ) ,x ( T ; u ) ) t R  :x Cun+l ~ 

~ 
u’(t)Ru(t)dt , where • (T-t ) and • (t ,t ) are the  state

c
i 

o A

transition matrices associated with u~P1 
and A

x(T;u)~~ (T ,t ;u)x , ueL2([t T],Rm )} ( U )  respectively.
0 0 0 ’

where ~(t,t ;u) is the state transition matrix Proof:
0

of (1) for each given u. It is clear that K Theorem 1 allows us to assume tha t  for aconsists of the pairs of cost and terminal state given x(T,u ) ,  there exists a constant vector u
corresponding to all admissible input functions as c
coordinates, such that x(T,u ) coincides with x(T,u)  and

C

Now consider the map G: K~{o,~ ) defined by T
(T — t )u I u(t)dt, (8)G(x°(u ) ,x(T;u))rx ’(T;u)Qx(T ;u) + x°(u). (5) 0 C Jt

Hence , J (u )  G(x°(u).x(T;u)). Consider the costs associated with u and u
C ,

The following lemma reveals some character- and assume without loss generality that P is a
istics of the set of attainability K. diagonal matrix with positive elements r1, i 1’’m:

Lemma 1: Every subset N (p) of K generated by 
- 

T
constant controls on [t ,T] is compact, where J u ’Ru dt ~ r u2 (T-t ) = U

c c . ic . o 1
t i=l 1
0

N~(p)r((x °(u),x(T;u ))cK :0~x°(u)~m ,p.c.$ ,and ~(t)=0} . 
T in

( 6)  1 u ’( t ) Ru ( t ) d t  ~ r. J u~ (t )dt  U 2
‘t ir l 1

0 0Prcof:

From (8) and H3lder ’s inecuality , we haveThe proof is strai ghtforward by the Euclidean
topology and the linear structure of (1) for each T

u (T-t ) -
2 2 — 1 u~ Idt)2given u. Since ~~()CKC T~

n4
~ and 0~ x°(u)I p. 0. 0

1 t i
one can easily establish the closedness and bound- 0
edness of the set

E {x(T;u): (T-t )u’Ru s p), 
~ 

(J~ 1u 1(t)!dt)2 ~ J~ u~
(t)dt(T—t

0
)

0 0 o o
which proves the lemma.

for in ’s, . Hence U
1 ~ 

U
2
. The epualitv is

The compactness of N (p) for each given achieved if and only if u.(t) = c, a constant.
positive p assures the existence of an opt imal Therefore, if the m inimum energy exists , it must
solution of the commutative bilinear system (1) be incurre d by a constant input u~ . But this
and (2) as given in the next theorem, j~ indeed the case because the function CC’ ,’) is

continuous on N Cc), and N (p) is compact for anyTheorem 2: C - C

given p. so that J
1

(u)  atta ins  its min i mu m on
Given a commutative bilinear system (1), the N (p).

optimal controls which minimize the cost (2) are
in the form of a constant vector uC which satis- With the assurance tha t uC exists , th e  ~~xi-• fies the transcendental enuation : 

mum Principle can “a used to derive the character!-

Si au~1 1x ’~
’(T ,t ) TI ~~

‘ (T-t )B~Q TI • (T-t )~ (T ,t )x ‘I
mn l C1 

0 In o A ~1
o A  0

‘ l i  . I
- 

• ~~~~~~~~ ) B •‘ (T-t )a’Q IT •ej
(T_ t

e)•A
(T
~
t
e

)x
oJ

a ‘ a I
~~~~n - ~~~~~~ I I

O A o a 151

-• - ~‘ (7) - zatton given F’, (‘?~~; i.e. alornr wi -” an en 1~~ral
trajectory for (1) and (2) the state, co—state and

_ _ _ _ _  3
~
•
~~ “ 1’ 

• 

,—•  ~~~~~~~~~~~~~~~~~~~ •



control satisfy from x to x1 at T and m i n i m i z e s  the as—
0

sociated cost (3). Furthermore , u* satisfiesa C
x = (A + B u*)x*, x(t ) = x the transcendental enuat ion :

m l  i~~~ 0 0

Si

a x = ~ (T ,t ) TI • (T-t )x (9)1 A 0 ,  C .  0 0
~~ n_ CA’ + ~ 

B u ~~ ca , p(T) — o x ( r )  1=1 1
1=1 1 1 -

Proof

Suppose
(xa ‘

Si

U r (u ( t ) sL 2 (t t  ,T),P
m ):G (T ,t ) IT l.(T,t )x x }1xet B~m~J o A o . o 0m l

From these relations it can be verified di- is the set of admissible controls. Them is
non-emmtv by hvoothesis , an d from Theorem 1dua(t) - - - -

rectly that dt 0 , using the cosmiutivity there exists a non-empty subset F consistire
of all elements of U which are con stant incutassumption , so that putting t = T into ua(t) and 
functions. For each u(t) c U , there is a uin C

using x(T) = ~ (T ,t ) ~ ~ (T— t )x leads u lt i— £ U such that
A 0 ,  C .  0 01 --

mately to exoression (7), This proves Theorem 2. ‘r

Theorem 2 states the simple char~icter of the J u(t)dt n I u dt,
t i t C

minimum energy control problem for commutative hi- 0 o
linear systems, i.e. the optimal controls are sim-
ply constant vectors which satisfy the transcen- 

Comparing the costs associated with u(t) anddental ecuation (7). This fact enables us to treat
u and using a similar argunent as that inthe optimal commutative bilinear system as a ft%ed

linear system for which the explicit solution is Theorem 2, one can show tha t the rin i~ um ener tv
immediatel’, available. A s in the Case with Theo- is incurred by a constant input u~’cU . Ecuatior,- c c  -rem 1, this result also holds for a slightly more 

(9) then follows by a direct commutation of thegeneral system in which A = A C t )  is a nxo time— solution of the ‘linear’ fixed svste~ ( 1). ~ .E . .varv irm matrix which co—’- utes with B.(i=1’•m) -

because in the proof the tiise-dependeiice of A In order to obtain ua from ecuatior,  (7 )  ordoes not play any role. To study the minimum 
(9) by iterative schemes , it is interestinr toenergy problem associated with cost function

(3), i.e. with a terminal constraint, we ack- 
study the unicueness property of the so uticn to
these equations . Hext, we will use the rromertvnowledge that  a bilinear system does not gener- 
of monotonicallv increasing maos to show theally have the global controllability property as . - -
unmouene ss of solutions to ( 7 )  for a class ofa linear sy stem which has been quite thoroughly bilinear systems.characterized. Therefore , we shall limit our

attention only to the reachable zone Z asso-
ciated with each bilinear system rather than III. Uniqueness of the yinimum Energy Control

nthe whole space P as the target set when we Defini tion $4 :
are dealing with the cost (3). In other words,
the mini m ization of control energy is taken
over the set Ti of admissible controls which A continuous mao C from R is into itself

c is nonotonically increasing If
consist of those constant input functions which

~~0 for all xdo r eer th~ given system to the desired target 1 and x2 in R~, where c’ , ’>

set at a certain f in i te  t ime,  is the usual Inner product, i.e. <~~,v> n

The following theorem assures the exiSt-  The f cl lcwire  lemma states the unicueness
‘rOe of -i comstant ont i i l  control to the mini- property associited with a monc’tonic map. The
rum energy prchiem (1) and (3). proof can be found in yintv [8].

Theorem 3: - I a  2: Given a monoronically incressimp ‘aD C ,
than th. solution of the eouation x , G(x) ‘

Given a co~nutativ. bilinear systom (1) 
~~ . ~~ ~ 

~m is uninu..with the cost (3). If x belongs to tb’  reach—
able Set ~ !x mt 2(rt ~~~~~~ then there exists Based on this lemma , suffIcient conditio~s0 0 ’

a constant optimal control u which steers (1) for uniqueness can be derived as summarized in

4
I ~~~~~ 

-‘ - h  
~~~
‘
~~~~~~~~

- - — 

j~=~ ie”~=- ~~~~‘~~ -‘~.“
- 

~~~~~ 
___________



the following theorem, minimum energy problem with a fixed terminal
constraint.

Theorem $4:

Example 1:There is a unique optimal solution to the
commutative bilinear system (1) with cost ( 2 ) Given the bi l inear system
if the matrix R 1Z(v ) is non-negative definite
for all v in ~n, where Z(v ) (Z

i1
) and

0 0
(10 )

(xli (1 01 lx ii 10 11 ix l~z n v ’( B’.B~ Q+B~ OB .)v  , i ,j  = 1,2,.. .a. I + , I I u ,i~ 0 ) 1  1 ) 0  d l  I n i  I
l i i i  i i i

Proof: ~x2 ~0 lJ ~x2) ~— l 0) ~x2J

We define CCu*) = ~~- R~~
’g where

x (0 )  (0 ,1) ’
m a

g. = y’G’(T,t ) IT 8~ (T—t )B~ Q IT $i
(T_t )$ (T ,t )v

j  o A  0 .  1 0 0 A 0 O ’
1=1 mnl with the cost to he minimized and terminal con-

straint given by

and Compute the Fr~chet differential of C at (c)
u~ with increment n :  J (u)  J u2(t)dt , x(1) =

dG(u*;h) = [~- R 1Z(y )]’h, h £ R m —C )

It can be easily seen that (A,B1
) commute:

where
hence , by Theorem 3 an optimal control ua sa-

C
- tisfies the following equation:Z . ny ’$’C” ,t ) IT ~ ‘( T— t ) E B ’B !Q + B OB .)ij  o A  o k l k 0 1 )

( o’
~ (cos ut sin u~l fo) (e sin ual

a ~ I I C C I  I I  I c~
x IT •~ ( T—t )~ CT ,t )y . I — I I [ j [kni  0 A 0 0  1 - e 1  I

-eJ k_ sin  u* cos u*J 1 e cos
By hypothesis, P’~ Z(v ) ~ 0 which implies 

C C

0
that C is monotonically increasing.

t 
There- Solving for u*, we obtain u~ kw , k =fore, Lemma 2 gives the uniqueness result. Q . E . D .  C C —

In order to have the total control energy —m i-
In the case of a single—input bilinear sys— mized , the integers with the smallest absolute

tam , condition (10) simplifies significantly to value are chosen , i.e. Ic1 1, k 2 
n —1. Clear—

the non-negative definiteness of the matrix ly, ul = S and u~ = -ii both incur a mini mal

B~O+Bji~B1
. cost of ~2 and steer the given system to the

desired final  state. Hence both u~ and
As far as the minimum energy ~roblem asso-

ciated with a terminal constraint :s concerned , are optimal controls.

sufficient conditions for the uninueness of
the solutions to Tq. (9) are more difficult to The lack of uninueness of the minimum emer--

derive because of the nonuninueness of solu- 
py Control problem for a commutatIv, system asso-
ciated with a terminal constraint ~s, in general ,tions to the TPBVP associated with a nonlinear expected because the ’ nonl inear  two-point ~c~ndarvsystem. value problem generally does not have a unicue
solution which prevents the uniqueness of crti-

Ti-c following simple exammie illustrates mal solutions in many cases.
the nonuoioueness of optImal controls for a

Because R~~ Z(v ) % 0 implIes that the Frechet 
IV. A Tvo-~ tmensional ~!ssile Intercept vet,m

0
derivative of “. Is monoronically increan img,  It Is assumed that for a tvrfca3. big ’--s~ eed
which impilea the monotonicity of C, see purauin~ missile and short initial range. ~

be ran-
Vainberg [9]. euveting of the vehicles can be restricted to a

- W ’  ~~~~~~~~~ ~~~~~~~~~~~~~ “~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



two-dimensional plane . Choose the coordinate sys- with
tam fixed in the missile as shown in Figure 1.
Denote the angular rate of the missile and the o o _ V

T 
0 ~ I C 1 0 0 0 01target with respect to a non—rotating reference I

frame as u and u , respectively. 0 0 0 0 V -v I 1-1 0 C 0 0 01
p T i T i I

A 1 0  0 0 0 0 u.~~, R~~~’) 0 0 0 0

0 o o o o j J 0 0 0 0 —l 01x3 ~O 0 0 _u
~ 

o a 0 0 0 1 0 0 1

~o o o o  0 o j  ~ o a o o o  o)
Y ‘

~~~~ T ar g e t  -

x

~
L 

x(t ) 

( 13)

2 (x
1

(t~~ ,x2(t~~ ,x3(t~~~,sin x3(t ),cos x
3
(t
0

) , 1) ’

X
1 in which u n u is defined as the control van —

Pursuer able.

Z Thø objective is to find a scuare inter-
grable fun ction u~(t) which steers the missile
to the target at some finite time T (a free
tire formulation) while the total ccntrol ener-
gy cons~~ed over this interval It ,T] is mini-

0

FIGURE 1 mized. The following performance index is thus
considered:

The ecuations of motion are then described
by [10] J (u )  = 1

T 
u
2(t)dt , T ) t (114)

i t
= _v

T 
sin x3 + X 2u 0

= v
T 

cos x - x u -y (11) subjec t to I -
3 l p p

= uT — u x
1

(T) = x2(T) = 0. (15)
p

In addition to the usual thrust vectorinc’,
where v

T 
and v are the line smeeds of the the missile is assumed to possess thrust modulaticn

p - 
capabilities so that v (t) can be ad~usted in ad-target and the missile relative to air; x

1 
and - P -

di t ion to u (t). Rather than rerard v as an
x
2 

are the horizontal and vertical distance from P p
independent con trol , a proportionality relation-

the missile, and x
3 

is the relative angle be- ship between u (t) and v (t) is postulated:p p
tween the headings of the missile and target mea-
sured counterclockwise,

v = y u  (16)
p p

The system (11) can be transformed into a
homogeneous bilinear systea by introducing three with the proportionality parameter ‘i’ to be de-
auxiliary states: x sin x3,x5 

n cos x 3 and temniined by the boundary conditions as irdicated= 1. That is, presently. With this postulated reiaticn , Eq. (13)
becomes

o 0 0 0 VT 0 I_ i 0 0 ~ C ~~

A~~~~O 0 O 0 O u _ l ,P~~~0 0 0 0 — 1

x A x + Bxu (12) 10 0 0 _v
T 

0 
°1 10 1 t 0 0 O~

0 0 0 0 U
T 

0 
~
0 0 0 0 —l 0

S 

~0 0 0 _U
T

O o~ ~o a n 1 0 0

- 0 0  0) t0
~~~~~~~~~~

° 0 0  0

(17)

~~ r~~~- ,~~~~~~~~k~’i~ -”- - ‘ 
-, ,. 

-



and it can be readily verified that A and B
(b) If u is zero, them there exists a trimle

comm ute for all y. Consecuently , in the event (~
,
~~~T) w~ich solves the same terminal con-that vT and UT are constants , the solution strai t problem ( 15) for every (x 1( t ) ,x ,( t ) .

of the system (12) and (17) can be expressed an— x (t )) £ R\E . where
alytically. 3 o

We will first resolve the terminal con— {(0,y,z)  eR 3
: Either v > 0 and z (2k+1)n , or

strai t problem by considering the intercept y < 0 and z = 2iss; k =
angle as a ~arameter . then incorporate the solu-
tions with the minimum energy problem. Consi- Since the nystert (12 ) and (17) is a coru-
deration should be given to two separate cases in tative bilinear system , the results in sect ion 1
which UT iS zero and non-zero, are applicable to the minimum en ergy problen (1~ )

and (15). The set U of admissible controls in
From Equation (11), denote the intercept c

this case includes those inmu c functions u ( t )angle by 8, i.e. satisfy ing the algebraic ecuations (19) and (19).
The next proposition which gives the exolicitT
form of the optimal controls to the :robler (1i)

B n x (T) = x (t ) - f u(s)ds + u,1,(T-t~~ . (18) and (15) is a direct consesuence of Theorem 3.3 3 0

0
Procosition 2: Given the system (12) and (It),

The terminal Constraint (15) becomes there exists at, optimal control u~ £ U which
C

minimizes the Cost (114) and steers the svste~ toI [x (t )+y]cos{u .(T—t ) + x (t ~~~ 
x
1

(T) x
2
(T) = 0 at sore T > t for each ar—

0 -
1 0  0 3 0

O I  1 0
propriate Set of lnitial conditions (x,(t ) ,

x (t ),xl(t),uT,vT). This control is given ~v2 o
[_[x l

(t
o
)+~ ]sin{~~~(T-to) + x3( t )~ B }j

x (t )-83 o
UT + T-t (20)

~~~~~~~~~~~~~~~~~~ 
-

+ i I (19) where T and B are given as discussed in Pro-
position 1.

1X 2 (t o~ 05{uT( T t o x 3(t o )_
~ j Proof:

Theorem 3 implies the existence of constant erti-(cos B — Coslu (T—t )—8])
T o I mal controls u~’ c U . By eQuation (18), u~ isvT l C - -

+ — I given as in (20).
U
t I

1sin[u~
(T_ t )—8] i’ sin B) The striking character of this optimal con-

0 trol law in a constant form is not completely —

without expectation because the control asmects2n other words , the terminal constraint problem
of the differential system (12) and (17) has proposed here include two channels . One is the

been reduced to solving a pair of nonlinear al- angular maneuver of the missile which counter-

gebraic equations (19) of transcendental type balances (offsets)  the angular maneuver of the

for an appropriate set (y , 8, T) .  A solution of- target , while the additional deeree of freedom
introduced by y carries Out the ttaior pursui ttsn exists for this case in which the number of

unknowus exceeds the number of equations, part of the problem and leads to a simple solu-
tion having some intuitive sense.

The next proposition shows the existence of a
triple (y ,B,T) which solves (19) for differ— On the other hand , it should be noted that -

ent initial conditions (x
1
(t ),x (t ) , x (t ~ 

although an optima l control is in a constant form
o 2 o 3 o (a step function), a sub—or~ iral control law can

in ~~~~
, the an,alvtls- exnression for this triple , always be constructed which  wi l l  drive the mis—

as well as th~ proof of the proposi tion , is given sile to the target at some T, with art a~ crcrri-
in Umi , ill] and [12]. ate intercept an~ le B and for some ratio v ,

as long as the area Swept out satirfies (1°~ .
ProF-oaition 1: (a) If u_ is a non-zero constant, Thi s allows the control encineer a rreat deal of

- f lexibi l i ty  in the design of a feasible easilythen there exists a triple ( y , B , T) sat isfy ing  (18) Implemented sub — optimal controller.and ( 19) which solves the terminal -onct ra in t
problem (15) for every (x 1

(t ) .x , ( t  ) , x (t ))cR3.0 0 3 0

+
The usual l imit  will be taken when UT , approaches 1’A \ B  denotes the complement of B In A.
zero.

7 __
.~ .-_-- 

— 
~~~ - ~~~~~~~~~~~~~~~~~~~~ .. . 

~~~~~~~ ~~



V. Conclusions [10] C.L. Slater, App lications of Ortirsal control
to the Air-to-Air Tactical Mi~aiZe Problem,It has been shown that the optimal con- Math. Lab . Preprint Series No. 5 , USAF ,

trols are in the form of constant vectors deter- Aerospace Pea . Labs, Ohio , 19714.
mined by the boundary conditions for a class of
minimum energy control problems associated with [11] X.C. Wei , Optimal Control of Bilinear Tys—
Commutative bilinear systems. Sufficient Con- term With Sore Aero8pace Aprlications, Ph.D.
ditions for the uniqueness of solutions were ob— Thesis, Brown Univ., Providence , RI , June 1979.
tam ed for the minimum energy problem without a
terminal constraint on the state. In the case of [12] K.C. Wei and A.E. Pearson , Minimum Er.eroy
the control problem with a fixed terminal con- Contro l of a Bilinear P urru it—Eras ion Syste m,
straint belonging to the reachable set , it was submitted for publication.
shown that a variety of diff erent controls can
be applied to reach the desired terminal state
provided that all Such controls satisfy an area
condition. This allows greater flexibility
from a design point of view and has been exploit-
ed in [12] for the singularly perturbed commu-
tative bilinear system.
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